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About the Presenter
• Dr. Bruce Archambeault

• Dr. Bruce Archambeault received his B.S.E.E degree from the University of New Hampshire in 1977 
and his M.S.E.E degree from Northeastern University in 1981.  He received his Ph. D. from the 
University of New Hampshire in 1997.  His doctoral research was in the area of computational 
electromagnetics applied to real-world EMC problems.  In 1981 he joined Digital Equipment 
Corporation and through 1994 he had assignments ranging from EMC/TEMPEST product design and 
testing to developing computational electromagnetic EMC-related software tools.  In 1994 he joined 
SETH Corporation where he continued to develop computational electromagnetic EMC-related 
software tools and used them as a consulting engineer in a variety of different industries.  In 1997 he 
joined IBM in Raleigh, N.C. where he is the EMC Distinguished Engineer, responsible for EMC tool 
development and use on a variety of products.  During his career in the U.S. Air Force he was 
responsible for in-house  communications security and TEMPEST/EMC related research and 
development projects.

• Dr. Archambeault has authored or co-authored a number of papers in computational 
electromagnetics, mostly applied to real-world EMC applications.  He is a past Board of Directors 
member of the IEEE EMC Society and Applied Computational Electromagnetics Society (ACES).  
He is the author of the book “PCB Design for Real-World EMI Control” and the lead author of the 
book titled “EMI/EMC Computational Modeling Handbook”.
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Course Outline
• Introduction
• EM Review
• Antennas
• Grounding
• Printed Circuit Board EMC Design
• Summary and Review



April 2010 Dr. Bruce Archambeault, IBM 4

Details, Details, Details

• Course schedule
• Rest rooms
• Lunch
• Informal !!!
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EMC Can Be Ugly

Design Engineer 
“thinks” he’s on 
schedule
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Why do we care?

• Interference with critical systems
• Self jamming of internal radio systems
• Physical destruction of sensitive electronics
• Susceptibility and emissions
• Legal requirements
• Examples
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EM Review

• dB
• Time and Frequency 

Domain
• wavelength
• Integration

• Maxwell’s Equations
• Skin Depth
• Inductance
• Capacitance
• Far field vs. near field
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Decibel (dB)

• Unit of measure expressing a ratio of TWO 
quantities  (no units)
– 20 * LOG10 (1st number/ 2nd number)

• Absolute levels are related to a standard 
value
– 20 * LOG10 (1st number/ standard value)



April 2010 Dr. Bruce Archambeault, IBM 9

Decibel Examples
• A 10% pay raise would be only 0.8 dB!
• The Pacific Ocean is 6.3 dB larger than the 

Atlantic Ocean
• the ratio of 10000:1 is 80 dB
• The ratio of 0.000002345: 1 is -112 dB
• One order of magnitude = 20 dB
• Factor of 2 = 6 dB
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More on Decibels

• Absolute voltage is usually relative to 1 uv
– dBuv
– 20 * LOG10 (volts/1e-6)

• Absolute power is usually relative to 1 mw
– dBm
– 10 * LOG10 (power/1e-3)
– Usually in a 50 ohm system
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Time and Frequency Domain

• Different ways to look at the same thing
• Time domain is usually used by Logic 

design engineers and signal integrity 
engineers

• Frequency domain is usually used by EMC 
engineers
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Time Domain Example 
Sine Wave

Time Domain Sine Wave
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Frequency Domain Example 
Sine Wave Spectrum

Sine Wave Spectrum
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Perfect Square Wave

• Built from odd numbered harmonics of 
the fundamental frequency

• Harmonics add with 1/n relative 
amplitude

• Duty cycle = 50%
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Sinewave @ 50 MHz
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Build a 50MHz Square Wave (3rd Harmonic)
10/90% Rise Time = 2.8 ns
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Build a 50MHz Square Wave (5th Harmonic)
10/90% Rise Time = 1.8 ns
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Build a 50MHz Square Wave (7th Harmonic)
10/90% Rise Time = 1.4 ns
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Build a 50MHz Square Wave (9th Harmonic)
10/90% Rise Time = 1.1 ns
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Build a 50MHz Square Wave (11th Harmonic)
10/90% Rise Time = 0.9 ns
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Build a 50MHz Square Wave (13th Harmonic)
10/90% Rise Time = 0.8 ns
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Harmonic Amplitude of 50 MHz Square Wave
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25 MHz Sinewave and 50 M bit/sec Squarewave
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Pseudo-Random and Square Wave Harmonic Frequencies
(Example @ 100 M bit/sec)

-60

-50

-40

-30

-20

-10

0

10

0 100 200 300 400 500 600 700 800 900 1000

Frequency (MHz)

R
el

at
iv

e 
Le

ve
l (

dB
)

Pseudo-random
Squarewave



April 2010 Dr. Bruce Archambeault, IBM 25

Non-Perfect Waveforms

• Even harmonics appear with duty cycle 
not exactly 50%

• Even harmonics appear with rise/fall time 
unbalance

• Overshoot/undershoot causes additional 
harmonics
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Field Propagation Speed
• Depends on

– Permittivity  (dielectric)    
– Permeability (magnetic)    

• Free Space
– Speed of Light   c
– 3 x 108 meters/second

με
cvp =

00

1
με

=c
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Wavelength

• Length of wave in free space (or other 
media)

f
vp=λ

Examples (in air):
Wavelength = 1 meter @ 300MHz 

Wavelength = 30 cm @ 1 GHz

Wavelength = 3 cm @ 10 GHz
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Derivative

• How fast is something
changing?

[ ]something
dt
d Changing with 

respect to time

[ ]something
dx
d Changing with respect 

to position (x)
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Partial Derivative

• How fast is something changing for 
one variable?

[ ]),( xtsomething
t∂
∂

Changing with respect 
to time (as ‘x’ is 
constant)

Changing with respect 
to position (x) (as time 
is constant)

[ ]),( xtsomething
x∂
∂
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Integration

• Simply the sum of parts (when the parts are 
very small)
– Line Integral --- sum of small line segments
– Surface Integral -- sum of small surface patches
– Volume Integral -- sum of small volume blocks
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Line Integral 
(find the length of the path)

)( dlEV
stop

start

•−=
→

∫

dl

‘piece’ of E field
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Line Integral

[ ])()( dyEdxEV y

stop

start
x ∗+∗−= ∫

dl

‘piece’ of E field
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Line Integral -- Closed
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Line Integral -- Closed

• Closed line integrals 
find the path length

• And/or the amount of 
some quantity along 
that closed path length
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Surface Integral
(find the area of the surface)

∫∫

∫

∗=

∗=

=

dydxArea

dydxda

daArea

As dx and dy become 
smaller and smaller, the 
area is better calculated
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Closed Surface Integral

• Find the surface area 
of a closed shape

∫∫ dashape
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Volume Integral
(find the volume of an object)

∫∫∫

∫

∗∗=

∗∗=

=

][ dzdydxVolume

dzdydxdv

dvVolume
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From Math to Electromagnetics
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Electromagnetics
In the Beginning

• Electric and Magnetic effects not connected
• Electric and magnetic effects were due to 

‘action from a distance’
• Faraday was the 1st to propose a relationship 

between electric lines of force and time-
changing magnetic fields
– Faraday was very good at experiments and 

‘figuring out’ how things work



April 2010 Dr. Bruce Archambeault, IBM 40

Maxwell
• Discovered the link 

between the “electro” 
and the “magnetic”

• Scotland’s greatest 
contribution to the 
world next to Scotch

• Maxwell, Heaviside
and Hertz
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Maxwell’s Equations 
are NOT Hard!

t
BE

t
DJH

∂
∂

∂
∂

−=×∇

+=×∇
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Maxwell’s Equations –
Differential Form

t
BE

t
DJH

∂
∂

∂
∂

−=×∇

+=×∇

A difference in Magnetic Field
across a small piece of space

A difference in Electric Field
across a small piece of space

A change in 
Electric Flux
Density with 
respect to time

A change in 
Magnetic Flux
Density with 
respect to time
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Maxwell’s Equations are not Hard!

• Change in H-field across space ¡ Change in 
E-field (at that point) with time

• Change in E-field across space ¡ Change in 
H-field (at that point) with time

• (Roughly speaking, and ignoring constants)
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Other Famous Equations

• Faraday’s Law
• Gauss’ Law
• Ampere’s Law
• Stokes Theorem
• Many others
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Near Field vs. Far Field
• Distance / Frequency

• Source Size

• Transition Distance Depends On Magnitude Of Error Allowed

• If Truly  Far-Field Then Source Can Usually Be Modeled 
Simply

• Equations and Graphs Assume Far-Field Simplified Case

• Real Life Problems Are Seldom Simple Due to Multiple 
Effects
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In the Far Field

• Electric field source (dipole, etc) has high 
impedance near to the source

• Magnetic field source (loop, etc) has low 
impedance near to the source

ohms
H
EZ 377== r

r
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EM Wave Impedance
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Important Concepts for Effective 
PCB Design

• Design intentionally
• Pass the first time!



April 2010 Dr. Bruce Archambeault, IBM 49

Skin Depth

• Current flows only near surface at high 
frequencies

Frequency Skin Depth Skin Depth 
60 Hz 260 mils 8.5 mm 
1 KHz 82 mils 2.09 mm 
10 KHz 26 mils 0.66 mm 

100 KHz 8.2 mils 0.21 mm 
1 MHz 2.6 mils 0.066 mm 
10 MHz 0.82 mils 0.021 mm 

100 MHz 0.26 mils 0.0066 mm 
1 GHz 0.0823 mils 0.0021 mm 

 

μσπ
δ

f
1

=



April 2010 Dr. Bruce Archambeault, IBM 50

Current Migrates to Outer Portions of the 
Conductor at High Frequencies

Resistance is determined by the area of the copper conductor 
actually used at each frequency!
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At High Frequencies

• Resistive loss and dielectric loss are present
• Inductance will usually dominate 
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Inductance
• Current flow through metal = inductance!
• Fundamental element in EVERYTHING
• Loop area first order concern
• Inductive impedance increases with 

frequency and is MAJOR concern at high 
frequencies

fLX L π2=
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Current Loop = Inductance

Courtesy of Elya Joffe
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Inductance Definition
• Faraday’s Law

∫ ∫∫ ⋅
∂
∂

−=⋅ Sd
t
BdlE

t
BAV
∂
∂

−=
V

B

Area = A

• For a simple rectangular loop
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Self Inductance 

• Isolated circular loop ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≈ 28ln

0
0 r

aaL μ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−+−+

+

++
= 2

2
0 11211

21
1

ln
2

p
pp

ppa
L

π
μ

• Isolated rectangular loop

Note that inductance is directly influenced 
by loop AREA and less influenced by 
conductor size!

radiuswire
sideoflengthp =
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Mutual Inductance

1

2
21

1212

I
M

IM
Φ

=

=Φ

Loop #1
Loop #2

( )∫ ⋅=Φ
2

212 dSˆrB
S

n
r

How much magnetic flux is 
induced in loop #2 from a 
current in loop #1?
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Mutual Inductance

Loop #1
Loop #2 Less loop area in loop #2 

means less magnetic flux in 
loop #2 and less mutual 
inductance

Loop #1
Loop #2 Less loop area perpendicular to 

the magnetic field in loop #2 
means less magnetic flux in loop 
#2 and less mutual inductance
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Partial Inductance

• Simply a way to break the overall loop
into pieces in order to find total 
inductance

L3

L4

L2

L1

L total=Lp11+ Lp22 + Lp33 + Lp44 - 2Lp13 - 2Lp24
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Important Points About Inductance

• Inductance is everywhere
• Loop area most important
• Inductance is everywhere
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Example
Decoupling Capacitor Mounting

• Keep vias as close to capacitor pads as possible!

Height above Planes

Via Separation

Inductance Depends 
on Loop AREA
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Via Configuration Can Change 
Inductance

Via

Capacitor Pads

SMT Capacitor

The “Good”

The “Bad”

The “Ugly”

Really  “Ugly”

Better

Best
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What is Capacitance?

• Capacitance is the 
ability of a structure to 
hold charge (electrons) 
for a given voltage

V
QC = CVQ =

• Amount of charge 
stored is dependant on 
the size of the 
capacitance (and 
voltage)
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High Frequency Capacitors

• Myth or Fact?
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Comparison of Decoupling Capacitor Impedance
100 mil Between Vias & 10 mil to Planes
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0603 Size Cap Typical Mounting

Via Barrel 10 mils

60 mils

20 mils

10 mils*

9 mils9 mils

10 mils*

108 mils minimum

128 mils typical
*Note: Minimum 
distance is 10 mils but 
more typical distance is 
20 mils
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0402 Size Cap Typical Mounting

Via Barrel 10 mils

40 mils

20 mils

10 mils*

8 mils8 mils

10 mils*

86 mils minimum

106 mils typical
*Note: Minimum 
distance is 10 mils but 
more typical distance is 
20 mils
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3.2 nH3.7 nH4.2 nH100

3.0 nH3.5 nH3.9 nH90

2.8 nH3.2 nH3.6 nH80

2.6 nH3.0 nH3.4 nH70

2.3 nH2.7 nH3.1 nH60

2.1 nH2.5 nH2.8 nH50

1.9 nH2.2 nH2.5 nH40

1.6 nH1.9 nH2.2 nH30

1.3 nH1.6 nH1.8 nH20

0.9 nH1.1 nH1.2 nH10

0402 
typical/minimum
(106 mils between 

via barrels)

0603 
typical/minimum

(128 mils 
between via 

barrels)

0805 
typical/minimum 
(148 mils between 

via barrels)

Distance into board 
to planes (mils)

Connection Inductance for Typical Capacitor Configurations
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Connection Inductance for Typical Capacitor 
Configurations with 50 mils from Capacitor Pad to Via Pad

4.6 nH5.0 nH5.5 nH100

4.3 nH4.7 nH5.2 nH90

4.0 nH4.5 nH4.9 nH80

3.7 nH4.2 nH4.5 nH70

3.5 nH3.9 nH4.2 nH60

3.1 nH3.5 nH3.9 nH50

2.8 nH3.2 nH3.5 nH40

2.5 nH2.8 nH3.0 nH30

2.0 nH2.3 nH2.5 nH20

1.4 nH1.6 nH1.7 nH10

0402 
(166 mils between 

via barrels)

0603 
(188 mils 

between via 
barrels)

0805 
(208 mils between 

via barrels)
Distance into board 

to planes (mils)
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EM Summary

• Electromagnetics is not hard
– Must get past the messy math

• Understanding what the basic equations mean is 
important

• CURRENT is important
• “Ground” is a place for potatoes and carrots!
• Where does the return current flow?

– #1 cause of EMC related problems
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PCB Design for EMI Control

• Design decisions WILL affect EMI 
emissions as well as internal system 
interoperability

• Thinking about signals/currents will 
help make the right choice!
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THINK 

• Not here to give list of rules, or “do’s” 
and “don’ts”

• UNDERSTAND WHY
• NO MAGIC!
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No Longer Separate!

• Signal Integrity
• Functionality
• EMC

– Emissions
– Susceptibility
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‘Ground’
• Ground is a place where 

potatoes and carrots thrive!
• ‘Earth’ or ‘reference’ is more descriptive 
• Original use of “GROUND”
• Inductance is everywhere

fLX L π2=
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What we Really Mean when we 
say ‘Ground’

• Signal Reference
• Power Reference
• Safety Earth
• Chassis Shield Reference
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‘Ground’ is NOT a Current Sink!

• Current leaves a driver on a trace 
and must return (somehow) to its 
source

• This seems basic, but it is often 
forgotten, and is most often the 
cause of EMC problems
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Single Point ‘Ground’ Myth

• At high frequencies, inductance makes this 
impossible!

• At high frequencies, parasitic capacitance 
makes this impossible!

• Depends on the amount of ‘Ground’ error 
your system can stand…...
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‘Grounding’ Needs Low Impedance 
at Highest Frequency

• Steel Reference Plate
– 4 milliohms/sq @ 100KHz
– 40 milliohms/sq @ 10 MHz
– 400 milliohms/sq @ 1 GHz

• A typical via is about 2 nH
– @ 100 MHz    Z = 1.3 ohms
– @ 500 MHz    Z = 6.5 ohms
– @ 1000 MHz   Z = 13 ohms
– @ 2000 MHz   Z = 26 ohms
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Single-Point Ground Concept

GND via

Board A Board B

Metal Enclosure

GND via

GND via
GND via

GND via

GND 
planes
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Reality Overcomes Single-Point Ground Intentions

GND via

Board A Board B

Metal Enclosure

GND via

GND via
GND via

GND via

GND 
planes
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Where did the Term “GROUND” 
Originate?

• Original Teletype connections
• Lightning Protection
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Ground/Earth

Teletype
Receiver

Teletype
Transmitter
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Ground/Earth

Teletype
Receiver

Teletype
Transmitter
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Lightning striking houseFIG 7

Lightning
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Lightning effect without rod
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Lightning effect with rod

Lightning rod
Lightning
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News from the Human Genome 
Project

“GROUND” is good gene
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What we Really Mean when we 
say ‘Ground’

• Signal Reference
• Power Reference
• Safety Earth
• Chassis Shield Reference

Circuit 
“Ground”

Chassis 
“Ground”

Digital 
“Ground”

D

Analog 
“Ground”

A
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Current Path

• Current will ALWAYS follow the path of 
least impedance
– Low frequencies lowest resistance
– High frequencies lowest inductance
– Change over ~ 100 KHz
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Low Frequency Return Current
Path of Least RESISTANCE

Data Cable

Signal

“Ground” wire

Large Ground Braid 
(low resistance)

System #1
System #2
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High Frequency Return Current
Path of Least Inductance

Data Cable
Signal

“Ground” wire

Large Ground Braid 
(low resistance)

Large Loop = high inductance

System #1
System #2
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Schematic with return current shown

IC1 IC2 IC3

Return currents on ground

Signal trace currents
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Actual Current Return is 3-Dimensional

Ground Layer

Signal Trace

IC

Ground Vias

Ground Layer

Signal TraceICGround Via

BOARD STACK UP:

Ground Layer

Signal Trace
CURRENT LOCATION:
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Low Frequency Return Currents Take 
Path of Least Resistance

Ground Plane

Driver
Receiver
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High Frequency Return Currents Take 
Path of Least Inductance

Ground Plane

Driver
Receiver
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PCB Example for Return Current 
Impedance

Trace

GND Plane

22” trace

10 mils wide, 1 mil thick, 10 mils above GND plane
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PCB Example for Return Current 
Impedance

Trace

GND Plane

Shortest DC path

For longest DC path, current returns under trace
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MoM Results for Current Density
Frequency = 1 KHz



April 2010 Dr. Bruce Archambeault, IBM 99

MoM Results for Current Density
Frequency = 1 MHz
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U-shaped Trace Inductance
PowerPEEC Results
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Microstrip Transmission Line

Stripline Transmission Line

Dielectric
Reference Planes

Signal Trace

Traces/nets over a Reference Plane
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Signal Traces

Reference Planes 

(Power, “Ground”, etc.)

Traces/nets and Reference Planes 
in Many Layer Board Stackup
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Microstrip Electric/Magnetic Field Lines
(8mil wide trace, 8 mils above plane, 65 ohm)

Electric Field Lines

Vcc

Courtesy of Hyperlynx
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Microstrip Electric/Magnetic Field Lines
Common Mode

8 mil wide trace, 8 mils above plane, 65/115 ohm)

Electric Field Lines

Vcc

Courtesy of Hyperlynx
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Microstrip Electric/Magnetic Field Lines
Differential Mode

8 mil wide trace, 8 mils above plane, 65/115 ohm)

Electric Field Lines

Vcc

Courtesy of Hyperlynx
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Electric/Magnetic Field Lines
Symmetrical Stripline

Vcc

GND

Courtesy of Hyperlynx
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Electric/Magnetic Field Lines
Symmetrical Stripline (Differential)

Vcc

GND

Courtesy of Hyperlynx
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Electric/Magnetic Field Lines
Asymmetrical Stripline

Vcc

GND

Courtesy of Hyperlynx
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Electric/Magnetic Field Lines
Asymmetrical Stripline (Differential)

Courtesy of Hyperlynx
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Pseudo-Differential Nets

• Are the drivers really differential?  Or 
complementary single ended nets?

• True differential requires no nearby 
reference plane

• Currents will exist on reference plane
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Pseudo-Differential Nets
Reference Plane Currents

• Signal integrity is greatly helped by 
‘differential’ nets

• Currents in reference plane
– Balanced only if:

• Traces are equal length (within 10-20 mils)
• Drivers are EXACTLY balanced 

– Not likely!
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What About Pseudo-Differential 
Nets?

• So-called differential traces are NOT truly 
differential
– Two complementary single-ended drivers

• Relative to ‘ground’

– Receiver is differential
• Senses difference between two nets (independent of 

‘ground’)
• Provides good immunity to common mode noise
• Good for signal quality/integrity
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Pseudo-Differential Nets Current in 
Nearby Plane

• Balanced/Differential currents have 
matching current in nearby plane
– No issue for discontinuities

• Any unbalanced (common mode) currents 
have return currents in nearby plane that 
must return to source!
– All normal concerns for single-ended nets 

apply!
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Pseudo-Differential Nets

• Not really ‘differential’, since more closely 
coupled to nearby plane than each other

• Skew and rise/fall variation cause common 
mode currents!



April 2010 Dr. Bruce Archambeault, IBM 115

Differential Voltage Pulse with Skew
1 Gbit/sec with 95 psec rise/fall time
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Common Mode Voltage
From Differential Voltage Pulse with Skew

1 Gbit/sec with 95 psec rise/fall time
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Differential Voltage Pulse with Rise/Fall Variation/Unbalance
1 Gbit/sec with 95 psec Nominal Rise/Fall Time
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Common Mode Voltage
From Differential Voltage Pulse with Various Rise/Fall Unbalance

1 Gbit/sec with 95 psec Nominal Rise/Fall Time
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Board-to-Board Differential Pair 
Issues

Connector

PCB Plane 1

PCB Plane 2

Microstrip

Microstrip

V
Ground-to-Ground 

noise



April 2010 Dr. Bruce Archambeault, IBM 120

Example Measured Differential 
Individual Signal-to-GND

Individual Differential 
Signals ADDED

Common Mode Noise 
170 mV P-P

500 mV P-P (each)



April 2010 Dr. Bruce Archambeault, IBM 121

Measured GND-to-GND Voltage

205 mV P-P
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Antenna Structures
Dipole antenna

PCB GND planes

Non-Dipole antenna
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Pin Assignment Controls Inductance 
for CM signals

Signal Pin             Related Ground Pins

37.17 nH 25.21 nH

16.85 nH 20.97 nH

(a)                                     (b)

(c)                                     (d)
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Different pins within Same Pair may have 
Different Loop Inductance for CM

“Ground” pins Differential pair

2 1

34

“Ground” pins Differential pair

2 1

34
pin 1 -- 26.6nH 

pin 2 -- 23.6nH

pin 3 -- 31.8nH 

pin 4 -- 28.8nH 
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PCB Layout
Thought Process

• Intentional Signals
– Clock
– Buss
– I/O
– Video

• Unintentional Signals
– Common Mode Currents
– Cross Talk Coupling
– Power Plane Bounce
– Above Board Structures
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Potential Problems
• Intentional Signals

– Loop Mode
– Common Mode

• Unintentional Signals
– Common Mode
– Crosstalk Coupling
– Power Plane Bounce
– Above Board Structures



So….. What can we do up 
front??

Design on PURPOSE
not by Magic!!
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Intentional Signal Emissions

• Loop Mode
– Intentional signal current travels down trace to 

receiver
– Assume return current flows directly under 

trace in reference plane
– Microstrip creates small loop antenna
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What is the Intentional Signal?

• bit rate
• rise time
• not enough information!
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(d and t are in seconds)

Log Frequency (Hz)
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Rule of Thumb for Spectral Envelope
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Faster Rise Time gives higher 
Frequency Harmonics!

Log Frequency (Hz)

20 dB/decade
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le

1/(πd) 1/(πtslow) 1/(πtfast)

Break frequency has 
significant impact
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Real Intentional Signal

• Note that Fmax= .35/risetime is not high 
enough!

• Previous guidelines is only a starting point
– Real world is much different

• Significant over/under shoot!
• example
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Maximum Frequency vs Rise Time
(50 MHz Example)

0

100

200

300

400

500

600

700

0 0.5 1 1.5 2 2.5 3

Rise Time (ns)

M
ax

im
um

 F
re

qu
en

cy
 (M

H
z) 1/(3tr) freq

Harmonic Freq (MHz)



April 2010 Dr. Bruce Archambeault, IBM 134

Time Domain comparison of Effect on Voltage Waveform
with Good and Poor Termination
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Current Radiates

• Voltage signal important for SI and 
Functionality

• NOT Important for emissions!
• Current radiates, not voltage!!!
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Time Domain comparison of Effect on Current Waveform
with Good and Poor Termination
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Comparison of Frequency Spectrum of Source Voltage on Trace
with Good and Poor Termination
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Comparison of Frequency Spectrum of Current on Trace
with Good and Poor Termination
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• Risetime often controlled by Signal 
Integrity constraints  -- can’t be slowed 
down

• Other ‘noise’ is caused by imperfect 
termination

• More details on this later
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Radiation from Traces
• Who cares about the far field?

– using shielded boxes
– even in unshielded products, most emissions 

are from cables
• Near field can excite shielded box 

resonances
– resonant frequency can be anything
– changes with placement of inside stuff
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How can we find the near field 2” 
above a board?

Board with 10” microstrip
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Hertzian Dipole Approach

E IL j
c r cr j rθ

θ
π ε

ω
ω

= + +
⎛
⎝
⎜

⎞
⎠
⎟

sin
4

1 1

0
2 2 3

Break trace into small segments
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Hertzian Dipole Approach

• Previous equation reduces to 
– Electric Field = Current * Length * Constant
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Near Radiated Fields above 
Board

• For a single clock net 
• Near Electric Field is Linear with Current

– 20 dB difference in Current means 20 dB 
difference in Electric Field!

– Termination makes a Big Difference!
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Intentional Signal Analysis
• Most EMC problems come from common-

mode currents
• All common mode currents are caused by 

intentional signals
• Signal Integrity tools now allow analysis of 

current spectrum
• Reduce high frequency harmonics on the 

current to lower EMC common mode 
currents!
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Why fight an emission problem 
which is due to a current that is 

not required?!

• A little extra analysis
• Use tools already available
• cost of different value resistors is equal

– Therefore, reducing emissions by termination 
control is FREE !!!
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Effect of Exposed Length 
reduced to 3”

• Using Same Spectrum of Current
• Near Electric field is linear with trace length

– Reducing exposed length from 12” to 3” 
reduces electric field by factor of 4 (12 dB)!
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Potential Problems
• Intentional Signals

– Loop Mode
– Common Mode

• Unintentional Signals
– Common Mode
– Crosstalk Coupling
– Power Plane Bounce
– Above Board Structures
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When Reference Plane not 
perfect

• Splits in power plane?
• Traces across split
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Splits in Reference Plane

• Power planes often have splits
• Return current path interrupted
• Consider spectrum of clock signal
• Consider stitching capacitor impedance
• High frequency harmonics not returned 

directly



April 2010 Dr. Bruce Archambeault, IBM 151

Split Reference Plane Example

PWR

GND
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Split Reference Plane Example With 
Stitching Capacitors

PWR

GND

Stitching Capacitors 
Allow Return 
current to  Cross 
Splits ???
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Capacitor Impedance
Measured Impedance of .01 uf Capacitor
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Frequency Domain Amplitude of Intentional Current Harmonic Amplitude
From Clock Net
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Are Stitching Capacitors 
Effective ???

• YES, at low frequencies 
• No, at high frequencies
• Need to limit the high frequency current 

spectrum
• Need to avoid split crossings with ALL 

critical signals
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Near Field Radiation from Microstrip on Board 
with Split in Reference Plane

Comparison of Maximum Radiated E-Field for Microstrip
With and without Split Ground Reference Plane
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With “Perfect” Stitching Capacitors Across Split
Comparison of Maximum Radiated E-Field for Microstrip

With and without Split Ground Reference Plane and Stiching Capacitors
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Stitching Caps with Inductance and Via Inductance

Comparison of Maximum Radiated E-Field for Microstrip
With and without Split Ground Reference Plane and Stiching Capacitors
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Distance to 
‘Capacitor’

Split 
Width

Perfect 
Capacitor

Trace

Distance to 
‘Capacitor’
Distance to 
‘Capacitor’

Split 
Width

Perfect 
Capacitor

Trace

Effect of Stitching Capacitor 
Distance
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Estimated Transfer Inductance for Trace Crossing Split Plane
Microstrip Configuration (Valid to 2 GHz) 
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Estimated Transfer Inductance for Trace Crossing Split Plane
Microstrip Configuration with Solid Plane Below (Valid to 400 MHz)

Split Width = 40 mils 
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Estimated Transfer Inductance for Trace Crossing Split Plane
Stripline Configuration  (Valid to 600 MHz)

Split Width = 40 mils (h2=Distance to Solid Plane, h1 = Distance to Split Plane) 
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Estimated Transfer Inductance for Trace Crossing Split Plane
Symetrical Stripline Configuration  (Valid to 600 MHz)

Split Width = 40 mils (h3=Distance to Solid Plane, h1 = Distance to Split Plane) 
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Split Plane videos

• Stitching Cap close to crossing
• Stitching cap far from crossing
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Stitching Capacitor Mounting
Power-to-Power

• Stitching Capacitor Performance at high 
frequencies depends on connection inductance!

Height above Planes

Via Separation

Inductance Depends 
on Loop AREA
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Pin Field Via Keepouts??

Return Current must go around 
entire keep out area --- just as bad 
as a slot

Return current path 
deviation minimal

s
d

Recommend s/d > 1/3
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Are Stitching Capacitors 
Effective ???

• YES, at low frequencies 
• No, at high frequencies
• Need to limit the high frequency current spectrum
• Need to avoid split crossings with ALL critical 

signals

• SAME for So-called ‘differential’ signals!!
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Referencing Nets
(Where does the Return Current Flow??)



April 2010 Dr. Bruce Archambeault, IBM 169

Referencing Nets
(Where does the Return Current Flow??)

• √ Microstrip/Stripline over unbroken 
reference plane

• √ Microstrip/Stripline across split in 
reference plane

• Microstrip/Stripline through via (change 
reference planes)

• Mother/Daughter card
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Microstrip/Stripline through via 
(change reference planes)

TraceVia
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How can the Return Current Flow When 
Signal Line Goes Through Via??

What happens to Return Current 

in this Region?

Return Current
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How can the Return Current Flow When 
Signal Line Goes Through Via??

• Current can NOT go from one side of the 
plane to the other through the plane
– skin depth

• Current must go around plane at via hole, 
through decoupling capacitor, around 
second plane at the second via hole!

• Displacement current spread
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Reference Planes

What happens to Return Current in 
this Region?

Return Current Trace Current

Displacement Current

Return Current Across Reference 
Plane Change
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GND

PWR



April 2010 Dr. Bruce Archambeault, IBM 175

Return Current Across Reference 
Plane Change 

With Decoupling Capacitor

Reference 
Planes

Return Current

Decoupling Capacitor

Displacement Current
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Return Current Across Reference 
Plane Change 

With Decoupling Capacitor (on Top)

Return Current

Decoupling Capacitor

Reference Planes

Displacement Current

Common-Mode Current
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Location of Decoupling 
Capacitors (Relative to Via) is 

Important!

• One Decoupling Capacitor at 0.5”
• Two Decoupling Capacitors at 0.5”
• Two Decoupling Capacitors at 0.25”
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RF Current @ 700 MHz with One 
Capacitor 0.5” from Via
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RF Current @ 700 MHz with One 
Capacitor 0.5” from Via 

(expanded view)
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RF Current @ 700 MHz with Two 
Capacitors 0.5” from Via
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RF Current @ 700 MHz with One 
Capacitor 0.5” from Via

(Expanded view)
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RF Current @ 700 MHz with Two 
Capacitors 0.25” from Via
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RF Current @ 700 MHz with Two 
Capacitors 0.25” from Via

(expanded view)
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RF Current @ 700 MHz with One REAL
Capacitor 0.5” from Via
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RF Current @ 700 MHz with Two 
REAL Capacitors 0.5” from Via
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RF Current @ 700 MHz with Two 
REAL Capacitors 0.25” from Via
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Critical Net Via Options
6-layer Board

Bad Bad

Good

Possible Routing 
Layers Planes

Via
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Compromise Routing Option for
Many Layer Boards

Good Compromise

Reference 
Plane

Gnd

Vcc1

Lot’s of Decoupling caps 
near ASIC
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Typical Driver/Receiver Currents
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Suppose The Trace is Routed Next 
to Power (not Gnd)

Vcc1

Vcc1

“Fuzzy” Return 
Path Area

“Fuzzy” Return 
Path Area

Return Path Options:

-- Decoupling Capacitors

-- Distributed Displacement Current

TEM Transmission 
Line Area
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Suppose The Trace is Routed Next 
to a DIFFERENT Power (not Gnd)

Return Path Options:

-- Decoupling Capacitors ??? May not be any nearby!!

-- Distributed Displacement Current – Increased current spread!!!

Vcc1

Vcc2

“Fuzzy” Return 
Path Area

“Fuzzy” Return 
Path Area

TEM Transmission 
Line Area
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Via Summary
Route critical signals on either side of ONE reference 
plane
Drop critical signal net to selected layer close to 
driver/receiver

Many decoupling capacitors (or GND vias) to help 
return currents

Do NOT change reference planes on critical nets unless
ABSOLUTELY NECESSARY!!
Make sure at least 2 decoupling capacitors within 0.25” of 
via (change reference planes)  with critical signals
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Mother/Daughter Board 
Connector Crossing

• Critical Signals must be referenced to same 
plane on both sides of the connector
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Mother/Daughter Board 
Connector Crossing

Connector Signal Path
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Return Current from Improper 
Referencing Across Connector

Connector 
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Return Current from Proper 
Referencing Across Connector
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How Many “Ground” Pins Across 
Connector ???

• Nothing MAGICAL about “ground”
• Return current flow!
• Choose the number of power and “ground” 

pins based on the number of signal lines 
referenced to power or “ground” planes

• Insure signals are referenced against same 
planes on either side of connector
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Think about Return Currents!!

Reference plane should be continuous under 
all critical traces
When Vias are necessary make sure there 
are two close decoupling capacitors
When crossing a connector to a second 
board, make sure the critical trace is 
referenced to the same reference plane as 
the primary board
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To Prevent/Reduce Loop Mode 
Emissions

Bury traces between planes whenever 
possible

No direct emissions from traces with no exposed length

Keep Exposed lengths short
Shorter exposed traces radiate less

Improve termination to reduce high 
frequency content

If the high frequency currents are not created, they 
can not radiate!
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Potential Problems
• Intentional Signals

– Loop Mode
– Common Mode

• Unintentional Signals
– Common Mode
– Crosstalk Coupling
– Power Plane Bounce
– Above Board Structures



April 2010 Dr. Bruce Archambeault, IBM 201

Intentional Signals -- Common 
Mode Emissions

• Return Currents do NOT flow only under 
microstrip

• Return current spreads out over entire plane 
to find path of least inductance

• When traces are near board edge, the return 
current is high along the edge
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Current Spread in Ground-Reference 
Plane from Microstrip

Microstrip
Finite GND plane
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Current Spread in Ground-Reference 
Plane from Microstrip

Difference in 
edge current
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Where’s the Radiation?

• Due to Current Build up Along the edge
– Along Edge of board
– Often near to enclosure seams, slots, airvents
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Return Current in Reference 
Plane with Trace Near Edge

High current

Low current

Trace
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E-field along edge vs. distance from edge
for 10”x4” board
4” long microstrip
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Example Field vs. Distance
Near Electric Field along Board Side due to Close Microstrip

10" x 4" Board w/ 4" microstrip
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Current Along Edge of Reference Plane
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Microstrip
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Isignal = the current amplitude (in linear scale) for each harmonic of the current waveform.
wg = the width of the ground-refer4ence plane (set to 1000 always)
d = the distance from the trace to the edge of the ground-reference plane
h = the height between the trace and the ground-reference plane
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Current Along Edge of Reference Plane

Isignal = the current amplitude (in linear scale) for each harmonic of the current waveform.
wg = the width of the ground-refer4ence plane (set to 1000 always)
d = the distance from the trace to the edge of the ground-reference plane
h = the height between the trace and the ground-reference plane
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Current Along Edge of Reference Plane

Isignal = the current amplitude (in linear scale) for each harmonic of the current waveform.
wg = the width of the ground-refer4ence plane (set to 1000 always)
d = the distance from the trace to the edge of the ground-reference plane
h1 and h2 = the height between the trace and the ground-reference plane
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To Prevent/Reduce Intentional 
Signal -- Common Mode 

Emissions
Keep traces away from board edge
– Reduces Return current along edge of reference plane

Improve termination to reduce high 
frequency content
– If the high frequency currents are not created, they can 

not radiate!
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Potential Problems
• Intentional Signals

– Loop Mode
– Common Mode

• Unintentional Signals
– Common Mode
– Crosstalk Coupling
– Power Plane Bounce
– Above Board Structures
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Unintentional Signal Emissions
Common Mode

• Return current Spread
• I/O connector’s pins directly connected to 

ground-reference plane
• results in high frequency common mode 

currents on external cables
• how can we stop those currents?
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Return Current in Reference 
Plane with Trace Near Edge

High current

Low current

Trace

“Ground” Pin on I/O Connector
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How Can We Stop These Currents?

• Split in Plane
• Treat the “Ground” pin as a SIGNAL Pin
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I/O Ground Plane Split Example

Serial, Parallel

Audio, 

keyboard, mouse
High Speed 
Circuits

High Speed I/o, Video, 
SCSI, etc

Ferrite Beads
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Z of split in Reference Plane
Impedance (Magnitude) Across Split Plane
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Results

• From experience --- Project X is prime 
example
– Controlled Change

• From Models
– Shielded Box with Internal PCB and single 

Microstrip trace
– Connector pin on “Ground” Reference plane

• NOT Connected to microstrip trace
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Shielded Box with Connector and 
Cable Attached
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Shielded Box

PCBMicrostrip Trace

External Cable
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Shielded Box

PCBMicrostrip Trace

External Cable

Split in Plane



April 2010 Dr. Bruce Archambeault, IBM 222

Comparison of Maximum Radiated E-Field
for Shielded Box with Internal PC Board

With and without Split Plane near I/O area
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What About I/O Intentional 
Return Currents?

• Long way around through chassis
– Functional and quality problems
– Other EMC problems

• Low frequency I/O (compared to clocks)
– Use ferrite bead across split near I/O trace 

crossing
• High impedance at high frequencies
• Low impedance at low frequencies
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What About I/O Intentional 
Return Currents?

• NEVER use splits for high frequency I/O
– Video
– SCSI
– USB 2.0

• Consider these signals critical signals
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I/O Ground Plane Split Example

Serial, Parallel

Audio, 

keyboard, mouse
High Speed 
Circuits

High Speed I/o, Video, 
SCSI, etc

Ferrite Beads
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Reference to the Chassis must be through as low 
an impedance path as possible, especially in the 
I/O connector area.  Never use extra components 

or traces 
(zero ohm resistors = zero ohm inductors)



April 2010 Dr. Bruce Archambeault, IBM 227

Reference to Chassis
Best Design Practice Multiple vias for 

each pad
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Low Impedance Path from PCB 
GND Plane to Chassis?

GND   
via

GND 
plane

Stand 
off

Metal 
Enclosure

IC
I/O 
signal

To 
unbalanced 

load
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To Prevent/Reduce Unintentional 
Common Mode Emissions

Use splits as close to I/O connector as possible
– Keep currents away from connector pins

Ferrite across split
– to allow intentional I/O signal return currents to 

return to source
Good Low Inductance/Impedance Path to 
Chassis
– External Radiation uses chassis as reference



April 2010 Dr. Bruce Archambeault, IBM 230

To Prevent/Reduce Unintentional 
Common Mode Emissions

Never use splits for high frequency I/O
– Same as critical signals -- keep return currents 

close
Treat ALL connector pins as Signal pins
– Ground pins are really signal return pins
– Intentional signal currents are there too!

Use filters on all lines
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Potential Problems

• Intentional Signals
– Differential Mode
– Common Mode

• Unintentional Signals
– Common Mode
– Crosstalk Coupling
– Power Plane Bounce
– Above Board Structures
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“Ground 
Bounce”

Power Plane Noise Control
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Power/Ground-Reference Plane Noise

• Must consider TWO Major Factors
– EMC -- Reduce noise along edge of board from IC 

somewhere else
– Functionality -- Provide IC with sufficient charge

• Decoupling strategies are FULL of Myths
– Consider the physics
– Don’t forget Inductance!
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Source of Power/Ground-Reference 
Plane Noise

• Power requirements from IC during 
switching

• Critical Net currents routed through via
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Power Bus Spectrum
Clock Driver IDT74FCT807
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Noise Injected between Planes Due to 
Critical Net Through Via

Signal Via

I/O Pin/Via

30 cm

20 cm

FR4 r=4.2       Loss tan=0.02
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Transfer Function from Via to I/O Pin
Transfer Function From Via-to-Via

20x30cm Board
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Decoupling Must be Analyzed in 
Different Ways for Different Functions
• EMC

– Resonance big concern
– Requires STEADY-STATE analysis

• Frequency Domain

– Transfer function analysis
• Eliminate noise along edge of board due to ASIC/IC 

located far away
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Decoupling Must be Analyzed in 
Different Ways for Different Functions

• Provide Charge to ASIC/IC
– Requires TRANSIENT analysis
– Charge will NOT travel from far corners of the 

board fast enough
– Local decoupling capacitors dominate
– Impedance at ASIC/IC pins important
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Steady-State Analysis

• Measurements and Simulations
• Test Board with Decoupling capacitors 

every 1” square
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5”

1”
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3”
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Figure 1

Test Board Ports
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#6 #7 #8 #9 #10

#11 #12 #13 #14 #15
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S21 Used for Decoupling “Goodness”

• Ratio of Power ‘out’ to power ‘in’
• Better Indicator of EMI noise transmission 

across board
• Also used to validate simulations
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Measured  S21 for 12" x 10" PC Board Between Power/Ground Planes
with No Decoupling Capacitors

(Measured Center to Corner)
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Test Board Decoupling Capacitor 
Placement for 25 .01 uf Caps

Possible Cap
Location

Populated
Cap
Locations
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Test Board Decoupling Capacitor 
Placement for 51 .01 uf Caps

Possible Cap
Location

Populated
Cap
Locations
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Measured  S21 for 12" x 10" PC Board Between Power/Ground Planes
with Various Amounts of Decoupling Capacitors

(Measured Center to Corner)
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S21 Between Port #8 and Port #1 on Test Board
With Various Amounts of .01 uf Decoupling Capacitors
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Test Board Decoupling Capacitor Placement 
for 41 22pf Caps 

(In Addition to 99 .01uf Caps)

Possible Cap
Location

Populated
Cap
Locations
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S21 Between Port #8 and Port #1 on Test Board
With 99 .01 uf Decoupling Capacitors and Various Amounts of 22pf 

Capacitors Added
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Measured Comparison of Multiple and Single Value 
Decoupling Capacitor Strategies
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Comparison of Model and Measured Data
for 10" x 12" Board

99 caps -- alternating .01uF and 330pF
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S21 Transfer Function for Different Value Capacitors
Center-to-Corner
10" x 12" Board
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Voltage Distribution @ 350 MHz
.01uF and 330pF Case (Source in Center)
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Voltage Distribution @ 750 MHz
.01uF and 330pF Case (Source in Center)
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Voltage Distribution @ 950 MHz
.01uF and 330pF Case (Source in Center)
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Voltage and Gradient
99 caps @ 800 MHz



April 2010 Dr. Bruce Archambeault, IBM 258

Decoupling Capacitor Mounting

• Keep as to planes as close to capacitor pads 
as possible

Height above Planes

Via Separation

Inductance Depends 
on Loop AREA
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Decoupling Capacitor Mounting

• Keep as to planes as close to capacitor pads 
as possible

CapacitorIC
Capacitor Connection 
Inductance Loop

IC Connection 
Inductance Loop

Plane Inductance Loop
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Via Configuration Can Change 
Inductance

Via

Capacitor Pads

SMT Capacitor

The “Good”

The “Bad”

The “Ugly”

Really  “Ugly”

Better

Best
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Comparison of Decoupling Capacitor Impedance
100 mil Between Vias & 10 mil to Planes
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Via Seperation (mils) Inductance (nH) Impedance @ 1 GHz (ohms) 
20 .06 .41 
40 0.21 1.3 
60 0.36 2.33 
80 0.5 3.1 

100 0.64 4.0 
150 1.0 6.23 
200 1.4 8.5 
300 2.1 12.69 
400 2.75 17.3 
500 3.5 21.7 

 

Comparison of Decoupling Capacitor 
Via Separation Distance Effects

0.1 uF Capacitor
10 mils

Via Separation
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Example Connection Inductance Values

2.07 nH2.4 nH4.3 nH4.2 nH0603 + 
2*160mil

1.5 nH2.1 nH3.15 nH3.3 nH0603 + 
2*100mil

0.8 nH1.1 nH1.74 nH2.3 nH0603 + 2*10mil

2.5 nH3.5 nH5.1 nH5.1 nH0805 + 
2*160mil

2.0 nH3 nH4.3 nH4.1 nH0805 + 
2*100mil

1.38 nH2 nH3.1 nH3.0 nH0805 + 2*10mil

Simple rect loop
(10 mils to plane)

Complex Formula
(10 mils to plane)

Simple rect loop
(20 mils to plane)

Complex 
Formula

(20 mils to plane)

Spacing 
between 

Vias

Fan, Jun, Wei Cui, James L. Drewniak, Thomas Van Doren, and James L. Knighten, “Estimating the 
Noise Mitigating Effect of Local Decoupling in Printed Circuit Boards,” IEEE Trans. on Advanced 
Packaging, Vol. 25, No. 2, May 2002, pp. 154-165.

Knighten, James L., Bruce Archambeault, Jun Fan, Samuel Connor, James L. Drewniak, “PDN Design 
Strategies: II. Ceramic SMT Decoupling Capacitors – Does Location Matter?,” IEEE EMC 
Society Newsletter, Issue No. x, Winter 2006, pp. 56-67. (www.emcs.org)

Sources for complex formula:
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Other Design Possibilities

• So-called Buried Capacitance
– Reduces high frequency transfer function
– Allows less capacitors to be used
– Really should be called ‘increased distributed 

capacitance’
• Lossy decoupling

– Reduces high frequency transfer function
– Allows less capacitors to be used
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Buried Capacitance

• Planes very close together (2 mils)
• Only effective for the power/ground plane 

pair !!!
• Other sets of Planes must still be decoupled 

the traditional way
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Buried Capacitance ONLY
Applies to Plane Pairs

Buried Capacitance Plane Pairs

Still Needs 
Decoupling
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Transfer function for Decoupling Board 10" x 12"
with Various Power/Ground Plane Separation and No Capacitors
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Transfer function for Decoupling Board 10" x 12"
with Various Power/Ground Plane Separation
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Lossy Decoupling

• New technique
• Series resistance and capacitance in same 

SMT package
• Need to use both low ESR capacitors and 

lossy capacitors
– fewer total parts
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Cause of Failure above
400 - 500 MHz?

• Inductance is limiting factor for capacitors
• Board size cause resonances which causes 

problems
• Need to reduce resonance effects by 

lowering Q-factor
– add resistive loss
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Modelled S21 Transfer Function
10"x12" Board

R&C Decoupling  (Port 8-to-1)

-80.0

-70.0

-60.0

-50.0

-40.0

-30.0

-20.0

0.0E+00 1.0E+08 2.0E+08 3.0E+08 4.0E+08 5.0E+08 6.0E+08 7.0E+08 8.0E+08 9.0E+08 1.0E+09

Frequency (Hz)

Tr
an

sf
er

 F
un

ct
io

n 
(d

B
)

99 RC Terminations

99 .01uF caps

Edge Term, 20 caps, 45 RCs

Edge Term, 35 caps, 30 RCs

Edge Term, 49 caps, 14 RCs



April 2010 Dr. Bruce Archambeault, IBM 272

Transfer Function with Resistive Caps
Port 8 to Port 1

(Resistive Caps with ~10 ohms and 0.01 uF)
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Comparison of Impedance of SMT Capacitors
Lossy and Normal Capacitor (0805 size)
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Transient Analysis
(Time Limited)

• Provide charge to ASIC/IC
• Inductance dominates impedance

– Loop area 1st order effect
• Traditional analysis not accurate enough
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switch IC loadIC
driverVDC

GND

CL

VCC

Z0, vp

GND

IC loadIC
driver

VCC

VCC

charge

logic 0-1

Z0, vp

shoot-thru 
current

IC loadIC
driver

GND

VCC

0 V

discharge

logic 1-0

Z0, vp

shoot-
thru 
current

Current in IC During Logic Transitions 
(CMOS)
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Typical PCB Power Delivery

GND

VCC

DC/DC converter

(Power source)

GND
VCC

IC load

VCC
GND

SMT capacitors

VCC
GND

IC driver VCC

GND

electrolytic
capacitor

VCC

GND
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Equivalent Circuit for Power Current 
Delivery to IC

CL
VDC

LtraceLps

Lbulk

Cbulk

Lvia

CSMT

Cplanes

connector 
and wiring capacitor 

leads

electrolytic 
capacitors

via interconnect

SMT 
capacitors VCC/GND

plane

IC load

PCB
wiring

DC/DC
converter
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Power Bus Charging Hierarchy

power 
supply

(DC/DC 
converter)

ultimate charge 
source

leaded 
capacitors

SMT 
capacitors

DC power 
planes CL

Lps Lbulk Lvia Lplanes
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Ltrace



April 2010 Dr. Bruce Archambeault, IBM 279

Traditional Analysis #1

• Use impedance of capacitors in parallel

Impedance to IC 
power/gnd pins

ESR1 ESR4ESR3ESR2

ESL1 ESL4ESL3ESL2

1uF .001uF0.01uF0. 1uF

No Effect of Distance Between Capacitors 
and IC Included!
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Traditional Impedance Calculation 
for Four Decoupling Capacitor Values
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Traditional Analysis #2
• Calculate loop area – Traditional loop 

Inductance formulas
– Which loop area?  Which size conductor

Impedance to IC 
power/gnd pins

ESR1 ESR4ESR3ESR2

ESL1+Ld1

1uF .001uF0.01uF0. 1uF

ESL2+Ld2 ESL3+Ld3 ESL4+Ld4

Over Estimates L and Ignores Distributed Capacitance
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More Accurate Model Includes 
Distributed Capacitance

Distributed 

capacitors

Intentional Decoupling Capacitors

Distributed 

capacitors

IC Power Pin

Intentional Decoupling Capacitors
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Distributed Capacitance Schematic

Loop L

Capacitance

ESR

Distributed Capacitance
Intentional 
Capacitor

Source

Note: L increases 
as distance from 
source increases

Loop L

Capacitance

ESR

Distributed Capacitance
Intentional 
Capacitor

SourceSource

Note: L increases 
as distance from 
source increases
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Effect of Distributed Capacitance

• Can NOT be calculated/estimated using 
traditional capacitance equation

• Displacement current amplitude changes 
with position and distance from the source
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Displacement Current 
500 MHz via @450 mils from Source
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Need to Find the Real Effect of 
Decoupling Capacitor Distance

• Perfect decoupling capacitor is a via 
between planes

• FDTD simulation to find the effect of 
shorting via distance from source

• Vary spacing between planes, distance to 
via, frequency, etc
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Impedance Result

• Linear with frequency (on log scale)
• Looks like an inductance only!
• Consider this inductance an Apparent 

Inductance
• Apparent inductance is constant with 

frequency
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Formulas to Predict Apparent 
Inductance

)1592.02774.0()()0403.01192.0(
)1763.02848.0()()0447.01242.0(

)1943.02948.0()()0492.01307.0(
)2675.02609.0()()0654.01336.0(

+−+−=
+−+−=
+−+−=
+−+−=

−

−

−

−

sdistLnsL
sdistLnsL

sdistLnsL
sdistLnsL

viafour

viathree

viatwo

viaone

s = separation between plates (mils/10)

dist = distance to via



April 2010 Dr. Bruce Archambeault, IBM 289

LapparentLIC Lcap

IC Capacitor

Power
Gnd

Lapparent

ESR

Lcap + LIC

Nominal 
Capacitance

Source

True Impedance for Decoupling Capacitor
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 Impedance Calculation with Apparent Inductance
for Four Decoupling Capacitor Values
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Case1

Case2
Case3

Traditional Calculation

Cap Value            Distance to Cap from IC
                     Case 1       Case 2        Case 3
0.1 uF           800mils     1200mils   1500mils
0.01 uF         600mils       900mils   1100mils
0.001uF        400mils       700mils     800mils
0.0001uF      200mils       400mils     400mils
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Effect of Distributed Capacitance

• Can NOT be calculated/estimated using traditional 
capacitance equation

• Displacement current amplitude changes with 
position and distance from the source

• Following examples use cavity resonance 
technique (EZ-PowerPlane)
– Frequency Domain to compare to measurements
– Time Domain using SPICE circuit from cavity 

resonance analysis
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Parameters for Comparison to 
Measurements

• Dielectric thickness = 35 mils
• Dielectric constant = 4.5, Loss tan = 0.02
• Copper conductivity = 5.8 e7 S/m
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Impedance at Port #1
Single 0.01 uF Capacitor at Various Distances (35mil Dielectric)
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Z11 Phase Comparison as Capacitor distance Varies for  35 mils FR4
ESL = 0.5nH
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Impedance at Port #1
Single 0.01 uF Capacitor at Various Distances (10mil Dielectric)
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Cavity Resonance (EZ-PowerPlane) 
Equivalent Circuit for HSPICE

Lii Ljj

Lij

N00i

N01i

Nmni Nmnj

N01j

N00jC0

C0
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G00

G01
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L01
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Port i Port j

Port n
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Impedance Comparison (EZ-PP vs HSPICE) at Port #1
Single 0.01 uF Capacitor at Various Distances (10mil Dielectric)

-50

-40

-30

-20

-10

0

10

20

1.0E+07 1.0E+08 1.0E+09 1.0E+10

Frequency (Hz)

Im
pe

da
nc

e 
(d

B
oh

m
s)

300 mils
300 mils (HSPICE)
1000 mils
1000 mils (HSPICE)



April 2010 Dr. Bruce Archambeault, IBM 298

Current Source Pulse for Simulated IC Power/GND
750 ps Rise/Fall 
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Time Domain Noise Voltage Across Simulated IC Power/GND Pin (1 amp)
Single Capacitor (with 2 nH) at Various Distances (Fullwave Simulation) 
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Time Domain Current through Capacitor From Simulated IC Power/GND (1 amp)
Single Capacitor (with 2nH)  at Various Distances
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Time Domain Noise Voltage Across Simulated IC Power/GND Pin (1 amp)
Single Capacitor (with No L) at Various Distances 
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Time Domain Current through Capacitor From Simulated IC Power/GND (1 amp)
Single Capacitor (with no L)  at Various Distances
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Time Domain Noise Voltage Across Simulated IC Power/GND Pin (1 amp)
Single Capacitor with Various Capacitor Connection Inductance 
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Time Domain Noise Voltage Across Simulated IC Power/GND Pin (1 amp)
Single Capacitor with Various Capacitor Connection Inductance 
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Maximum Time Domain Noise Voltage Across Simulated IC Power/GND Pin 
Single Capacitor at Various Distances (Fullwave Simulation) 
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Maximum Time Domain Noise Voltage Across Simulated IC Power/GND Pin 
Single Capacitor at Various Distances (Fullwave Simulation) 
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Maximum Time Domain Noise Voltage Across Simulated IC Power/GND Pin 
Single Capacitor at Various Distances (Fullwave Simulation) 
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Maximum Time Domain Noise Voltage Across Simulated IC Power/GND Pin 
Single Capacitor at Various Distances (Fullwave Simulation) 
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Maximum Voltage vs Distance to Capacitor for 1 ns Rise/fall time
0.01 uF Capacitor with 0.5 nH ESL and 30 mOhm ESR
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Example #1  
Low Cap Connection Inductance
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Example #2  
High Cap Connection Inductance
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Example #1  
Hi Cap Connection Inductance
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Example #1  
Lower Cap Connection Inductance
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GND
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PCB
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Capacitor Connection Inductance Ratio

3.362.671.981.290.9235

13.8811.509.136.751.6610

L3/L2 
w/extra 
300 mil 
trace 

length

L3/L2 
w/extra 
200 mil 
trace 

length

L3/L2 
w/extra 
100 mil 
trace 

lengthL3/L2

0603 
SMT 
L3' 

(nH)

62mil brd
centered 

power bus 
thickness, 

mils

0.952535
1.071335
1.11035
0.272510
0.3041310
0.321010

L2
(nH)

via 
diameter, 

(mils)

Power bus 
thickness, 

(mils)

GND

PWR

Cap

PCB

L2
L3’

ESL
L3=L3’ + ESL

For local decoupling need L3/L2 < 3



April 2010 Dr. Bruce Archambeault, IBM 315

Effect of Capacitor Value??

• Need enough charge to supply need
• Depends on connection inductance
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Time Domain Noise Voltage Across Simulated IC Power/GND Pin (1 amp)
Single Capacitor (with No L) with Various Capacitor Values 
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Time Domain Noise Voltage Across Simulated IC Power/GND Pin (1 amp)
Single Capacitor (with 0.5 nH Connection L) with Various Capacitor Values 
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Time Domain Noise Voltage Across Simulated IC Power/GND Pin (1 amp)
Single Capacitor (with 1 nH Connection L) with Various Capacitor Values 
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So Far……
• Frequency domain simulations not optimum 

for charge delivery decoupling calculations  
(phase not considered)

• Time domain simulations using single pulse of 
current indicate limited capacitor location 
effect
– Connection inductance of capacitor much higher 

than inductance between planes
– Charge delivered only from the planes
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Charge Depletion

• IC draws charge from planes
• Capacitors will re-charge planes

– Location does matter!
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Model for Plane Recharge 
Investigations

Port2 Port2 
(4,5)(4,5)

Port1Port1
(8,7)(8,7)

a = 12a = 12

b = 10b = 10

d = 35 mild = 35 mil
Cdec Cdec 

(4.05,5)(4.05,5)

Decoupling Capacitor :
C = 1uF
ESR = 30mOhm
ESL = 0.5nH

5.4=rε

DC voltage used to DC voltage used to 
charge the power charge the power 

plane plane 

VdcVdc

I inputI input

Port3 Port3 
(4,4.95)(4,4.95)

Port2 Port2 
(4,5)(4,5)

Port1Port1
(8,7)(8,7)

a = 12a = 12

b = 10b = 10

d = 35 mild = 35 mil
Cdec Cdec 

(4.05,5)(4.05,5)

Decoupling Capacitor :
C = 1uF
ESR = 30mOhm
ESL = 0.5nH

5.4=rε

DC voltage used to DC voltage used to 
charge the power charge the power 

plane plane 

VdcVdc

I inputI input

Port3 Port3 
(4,4.95)(4,4.95)

Port 2 represents IC current draw
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Charge Between Planes vs.. Charge 
Drawn by IC

Board total charge : C*V = 3.5nF*3.3V = 11nC

Pulse charge 5A peak : I*dt/2 = (1ns*5A)/2=2.5nC
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Triangular pulses (5 Amps Peak)
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Charge Depletion Voltage Drop

0 2 4 6 8 10
1

1.5
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V
]

Ls = 1nH
Ls = 10 nH

Ls = 50 nH
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Charge Depletion vs. Capacitor Distance
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Charge Depletion for Capacitor @ 400 mils 
for Various connection Inductance
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Effect of Multiple Capacitors While Keeping 
Total Capacitance Constant

(power-ground pins at IC center)

12”

10”

Port1 (8,7)
(Ls 50nH)

Port2 (4,5)
(power pin)

εr =4.5

Decap

Ground pin
1 inch

The decap locations are 800mils, 1200mils, 2700mils from the power pin

• C=1uF
• ESL=0.5nH
• ESR=1Ω
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Effect of Multiple Capacitors While Keeping 
Total Capacitance Constant

(power-ground pins at IC center)

12”

10”

Port1 (8,7)
(Ls 50nH)

Port2 (4,5)
(power pin)

εr =4.5

Decap

Ground pin
1 inch

The decap locations are 800mils, 1200mils, 2700mils from the power pin

• C=0.5uF
• ESL=0.5nH
• ESR=1Ω
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Effect of Multiple Capacitors While Keeping 
Total Capacitance Constant

(power-ground pins at IC center)

12”

10”

Port1 (8,7)
(Ls 50nH)

Port2 (4,5)
(power pin) εr =4.5

Decap

Ground pin
1 inch

The decap locations are 800mils, 1200mils, 2700mils from the power pin

• C=0.25uF 
• ESL=0.5nH
• ESR=1Ω
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Constant Capacitance 
800 mil Distance
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Constant Capacitance 
800 mil Distance
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Effect of Capacitor Value??

• Need enough charge to supply need
• Depends on connection inductance
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Time Domain Noise Voltage Across Simulated IC Power/GND Pin (1 amp)
Single Capacitor (with No L) with Various Capacitor Values 
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750ps Rise, 10 mil planes, 100pF @ 400mils
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Time Domain Noise Voltage Across Simulated IC Power/GND Pin (1 amp)
Single Capacitor (with 0.5 nH Connection L) with Various Capacitor Values 
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Time Domain Noise Voltage Across Simulated IC Power/GND Pin (1 amp)
Single Capacitor (with 1 nH Connection L) with Various Capacitor Values 
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750ps Rise, 10 mil planes,  (1nH) 1000pF @ 400mils

750ps Rise, 10 mil planes,  (1nH) 100pF @ 400mils
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Noise Voltage is INDEPENDENT 
of Amount of Capacitance!

 

As long as there is 
‘enough’ chargeDist=400 mils

ESR=30mOhms

ESL=0.5nH
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What Happens if a 2nd Decoupling 
Capacitor is placed near the First 

Capacitor?

Observation 
Point

Via #1
Via #2 Moved in arc 
around Observation 
point while 
maintaining 500 mil 
distance to 
observation point

500 
mils

distance
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Second Via Around a circle

Port 2
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theta: angle as shown in the figure in degree

d2: distance between Port 2 and Port 3 in mil

d1: distance between Port 3 and Port 1 in mil

d: thickness of dielectric layer in mil

r: radius for all ports in mil

R: distance between Port 1 and Port 2 in mil

Courtesy of Jingook Kim, 
Jun Fan, Jim Drewniak

Missouri University of 
Science and Technology
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Effective Inductance for Various Distances to Decoupling Capacitor
With Second Capacitor (Via) Equal Distance Around Circle

Plane Seperation = 35 mil -- Via Diameter = 20 mil
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Effective Inductance for Various Distances to Decoupling Capacitor
With Second Capacitor (Via) Equal Distance Around Circle

Plane Seperation = 10 mil -- Via Diameter = 20 mil
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Effective Inductance for Various Distances to Decoupling Capacitor
With Second Capacitor (Via) Equal Distance Around Circle

Plane Seperation = 5 mil -- Via Diameter = 20 mil
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Second Via Along Side

Port 2

Port 1 

( )yx,

R

Port 3

1d

2d

2
2

2
1 dRd +=

Port 2

Port 1 

( )yx,

R

Port 3

1d

2d

2
2

2
1 dRd +=

d2: distance between Port 2 and Port 3 in mil

d1: distance between Port 3 and Port 1 in mil

d: thickness of dielectric layer in mil

r: radius for all ports in mil

R: distance between Port 1 and Port 2 in mil
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Effective Inductance for Various Distances to Decoupling Capacitor
With Second Capacitor (Via) Positioned Adjacent to First Capacitor

Plane Seperation = 35 mil -- Via Diameter = 20 mil
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Effective Inductance for Various Distances to Decoupling Capacitor
With Second Capacitor (Via) Equal Distance Around Circle

Plane Seperation = 10 mil -- Via Diameter = 20 mil
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Effective Inductance for Various Distances to Decoupling Capacitor
With Second Capacitor (Via) Equal Distance Around Circle

Plane Seperation = 5 mil -- Via Diameter = 20 mil
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Understanding Inductance Effects and 
Proximity

1 via

10mm

2 via with degree 30°

2 via with degree 90° 2 via with degree 180°

20cm

20cm

10cm

10cm
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Current Density
A/m2

[m]

[m]

A/m2

[m]

[m]
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[m]
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Current Density in Planes
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Effect of Plane width on Inductance
Case1 : 10 inches

Case2 : 5 inches

Case3 : 2 inches
1 inch

Port1 Port2
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~ 250pH

~ 330pH

~ 560pH

Case1 : 10 inches

Case2 : 5 inches

Case2 : 2 inches
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Observations

• Added via (capacitor) does not lower 
effective inductance to 70-75% of original 
single via case

• Thicker dielectric results in higher 
inductance

• Normalizing inductance to single via case 
gives same curve for all dielectric 
thicknesses
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Decoupling Analysis Summary
• EMC Frequency Domain analysis

– Steady-state conditions
– Transfer function across the board
– Measurements and simulations agree well
– Distance of capacitors from ASIC load does not change steady-state 

impedance

• Charge Delivery Time-Limited analysis
– Using equivalent SPICE circuit from simulations
– Current from capacitors change significantly as capacitor moves further 

away from ASIC
– Noise at ASIC pins increase significantly as capacitor moves further 

away from ASIC

– Steady-state frequency domain analysis not sufficient for charge 
delivery design of decoupling capacitors
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Two Major Questions

How will structure respond?
• What is the source of the noise?

– CURRENT!
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Predicting the Source of 
Decoupling Noise

• What is the source?
• ICs need two types of current

– Current for the I/O drivers
– “Core” current

• Current that does not go out the I/O drivers

• On-going research with Prof Jim 
Drewniak at UMR 
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Modeling the Power Current Waveform
For Clock Buffer/Driver

• Ip2 = shoot through current
• Ip1 = I/O current + core current

Δt1
T/2

Δt2
T/2

Δt1
t

0

i(t)

IP1

IP2
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Core Current

• Cpd is specified for Clock drivers/buffers
• m is number of I/O drivers
• t2 = tr + tf

2
2

**
t

VmC
I ccpd

p Δ
=
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I/O Driver Current
• Simple Capacitive Load method
• CL = 10 pF is typical
• n = number of loads
• t = tr

2/t
nVCI ccL

L Δ
=
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More Accurate I/O Driver 
Current

• Use Signal Integrity tools to 
find current waveform
– Hyperlynx
– Spectraquest
– SPICE
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Example for Clock Buffers

60 MHz100 MHz100 MHzf (operating 
frequency)

10 nS/V

8 or 4

8 or 4
5 V

96 pF per 
bank(enable) or 12 

pF per bank(disable)

CDC208

1.0 nS4 V/nStr(MAX)

86n (number of 
loads)

106m (number of 
outputs)

3.3 V3.3 VVCC

25 pF per 
output

19.5 pF per 
output

CPD

MPC946MPC905
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Motorola MPC905 Results
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Motorola MPC946 Results
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CDC208 (4 loads)
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CDC208 (8 loads)
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Modeling results with different CPD

MPC905
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Modeling results for IDT807 (load C only)
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Modeling results for ICS9341 (load C only)
ICS9341
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Note: The chip has a lot of different clocks: 8 CPU (133 MHz), 8 PCI (33.3 
MHz), 2 USB (64 MHz and 32 MHz) and 2 REF (14.318 MHz).
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Other Sources on Active Board

• Large ASICs do not specify Cpd

• Measured power/ground plane noise for 
large ASIC with and without decoupling 
capacitors installed

• Circuits operating with exerciser software
• Examples for 1.5 volt and 2.5 volt supplies
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Illinois Power Noise Measured Across C534 (1.5 volt Supply)
With Decoupling Capacitors Installed
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Illinois Power Noise Measured Across C534 (1.5 volt Supply)
With Decoupling Capacitors Removed
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Voltage Histogram 
 Power Noise Measured Across C534 (1.5 volt Supply)
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Power Noise Measured Across C534 (Tvcc 1.5v Supply)
With Decoupling Capacitors Installed
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Power Noise Measured Across C534 (Tvcc 1.5v Supply)
With Decoupling Capacitors Removed
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Illinois Power Noise Measured Across C533 (2.5 volt Supply)
With Decoupling Capacitors Installed
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Illinois Power Noise Measured Across C533 (2.5 volt Supply)
With Decoupling Capacitors Removed
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Voltage Histogram 
 Power Noise Measured Across C533 (2.5 volt Supply)
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Power Noise Measured Across C533 (2.5 volt Supply)
With Decoupling Capacitors Installed
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Power Noise Measured Across C533 (2.5 volt Supply)
With Decoupling Capacitors Removed
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Preliminary Results for Large 
ASICs/ICs

• Core current smoothes out to DC due to 
package inductance

• I/O current dominates for EMC
• Pseudo-random data
• Statistical analysis indicates half of data bus 

at ‘1’ state most of the time
• Statistical analysis indicates 1 – 2 data lines 

switch high vs. low
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ASIC Rough Estimation Time 
Varying Current in Power

• Use 1/3rd Specified power for time varying 
power

• Use 2*tr for width of current pulse
• Find height of current pulse to meet time 

varying power
– Use supply voltage



April 2010 Dr. Bruce Archambeault, IBM 380

ASIC Rough Estimation Time 
Varying Current in Power

time

cu
rr

en
t

Cycle 
time

2*Rise time

Area Equal

Current 

for 1/3rd

Total Power

Current 

Peak Pulse



April 2010 Dr. Bruce Archambeault, IBM 381

To prevent/Reduce Unintentional 
Signal -- Power Plane Bounce

Distribute Decoupling Capacitors evenly 
Across entire Board
Capacitor Value not Especially Important!
– .01 uF or .1 uF the same!
– Use the largest value of capacitor in the selected SMT 

Package

Adding ‘high frequency’ capacitors does NOT
help, and may HURT at low frequencies!
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To prevent/Reduce Unintentional 
Signal Power Plane Bounce

Provide capacitors near ALL IC power pins for 
functionality
– Distance from IC critical

Avoid routing critical nets through vias
– This effect requires decoupling between all planes

Consider Alternative Solutions
– Lossy Decoupling
– Closely spaced Planes (Increased distributed capacitance)
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Power Decoupling Summary
• Two different types of decoupling analysis 

required
– Transient analysis for functionality

• Apparent inductance must be included

– Steady state analysis for EMC
• Resonance effects important

• Source of power/ground-reference plane noise
– Current
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Shielding

• Basic requirement is for tangential electric 
fields to equal zero at perfect conductors
– Induces current in conductor to meet this 

requirement
• Most shields are close enough to perfect
• Most shields are thicker than effective skin 

depth
– Currents on surface only
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Perfect Shielded Enclosure
Current on inside of metal 
enclosure due to internal 
fields (from PC board, cables, 
etc)

Perfect metal enclosure 
(no apertures/holes) will 
have NO currents on 
outside of enclosure
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Not-So-Perfect Shielded Enclosure
Current on inside of metal 
enclosure due to internal 
fields (from PC board, cables, 
etc)

Slot interrupts 
currents on inside of 
enclosure

Currents must travel 
around slot!
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Current Path is Longer Around 
Aperture

-- Currents must flow in longer path

-- Inductance in this current path

-- Current through impedance = voltage across aperture
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Shield External View

• Voltage across slot
– Creates currents on outside of enclosure
– Currents cause fields

• Shield ‘leakage’
– Amount of ‘leakage’ at a given frequency is 

dependent on length of slot
• Longer slots mean longer current path interruption
• More inductance --- More impedance --- More 

voltage across slot
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Joints with Gaskets are Three-
Dimensional
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Metal-to-Metal Contact Required!

coating

coating

Iinj

Vgap

contact area



April 2010 Dr. Bruce Archambeault, IBM 391

Cables and Shielding

Shielded Box

Shielded Cable

Perfect connection between 
box and cable shields

Intentional Signal Current

Signal Return Current

All Currents are Enclosed within Shielded 
Enclosure and Cable Shield
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Not-so-Perfect Connection

Shielded Box

Shielded Cable

Not-Perfect connection 
between box and cable 

shields (Impedance)

Intentional Signal Current

Voltage across connection 
impedance causes currents on 

outside of shields

Signal Return Current
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Cable Connection to Chassis is 
Usually the Weak Point

VCM ICM
VCM ICM

SMALL contact impedance (360°)
SMALL VCM

SMALL ICM

SMALL radiation

HIGH contact impedance (<360°)
HIGH VCM

HIGH ICM

HIGH radiation
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Cables Require 360 Degree contact 
for Good Shielding

GOOD contact points

Cable shield

Connector backshell



April 2010 Dr. Bruce Archambeault, IBM 395

Cables
Metal chassis

360°: good to about infinity

4 points: good to about 100 MHz    

2 points: good to about 10 MHz    

EM TIGHT
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Antennas

• All metal conductors are antennas!
• Some are more efficient than others

– especially at certain frequencies
• The same antenna can radiate or receive

– reciprocity works!
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Simple Dipole Antenna

length

Dipole Antenna is most 
efficient when it’s 
length is one-half the 
wavelength

But --- it will work at 
ALL frequencies, just 
not as efficiently



April 2010 Dr. Bruce Archambeault, IBM 398

Hertzian Dipole Approach

E IL j
c r cr j rθ

θ
π ε

ω
ω

= + +
⎛
⎝
⎜

⎞
⎠
⎟

sin
4

1 1

0
2 2 3

--Break Antenna into small segments

-- solve for E field for each segment individually

-- Vector sum all contributions
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Monopole Antenna
• Must work with a ‘ground’ image plane!
• Image plane must be very large (infinite)

Image

h

h

Monopole 
Antenna
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This is not a Monopole Antenna

Metal Box
wire

This is more like a lumpy, unbalanced dipole! 
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EMC Design Summary
Eliminate at the source
Think ahead -- Plan ahead
Intentional and Unintentional currents
What is the Frequency Spectrum of the 
Current on Critical Nets ?
Where does the Return Current Flow ?
No magic!
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PCB EMC Design Summary
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Review of Important Things
• Control the current
• Consider each potential emissions cause 

separately
• Route Critical Traces first
• Consider EMC effects early during board 

design
– First pass boards for functionality only is 

usually a bad idea!
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Number ONE Problem

• Intentional signal return current
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Top Contributors
• Non-optimum critical net termination
• Critical nets over splits in planes
• Critical nets routed to different layers with a 

change in reference planes
• Critical nets too close to I/O nets
• Un-split ground-reference planes in low 

speed I/O area
– Treat I/O “ground” leads as I/O signal leads
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Top Contributors (cont)

• Decoupling
– Largest value capacitance in selected package 

size, spread over entire board
– Extra capacitors near high speed ICs
– Decouple all adjacent plane pairs

• I/O reference connected to chassis with low 
impedance path

• Filter all low speed I/O signal traces



April 2010 Dr. Bruce Archambeault, IBM 407

Top Contributors (cont)

• Bury Critical traces on internal layers
• Keep high speed devices far from I/O area
• USB and Ethernet special cases

– do not need planes under final I/O lines
• Provide “grounding” option for large 

heatsinks
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Where to Go for More?
• Limited selection of EMC design books

– Beware of some popular books!!!
– “PCB Design for Real-World EMI Control” (good choice)

• Bruce Archambeault

• EMC ‘experts’
– Experience is important
– Again, beware ---- ask questions and understand WHY

• Cookbooks do not work!  Every case is special 
and different


